勉強法数学の勉強法

高校入試対策!数学の「錯角」をバッチリ理解するコツを徹底解説!

更新日:

同位角と錯角は平行線の性質を表すときにも登場します。

その際、どちらも似たような性質を持っているので混同してしまいやすいです。

この記事を読んで、同位角と錯角の区別がしっかり付けられるようになりましょう!

なお同位角について詳しく解説した記事もありますので、ぜひそちらも読んでみてくださいね。

錯角とは

2直線l, mに直線nが交わっているとき、∠cと∠eのような位置にある2つの角を錯角といいます。

このように2直線l, mに直線nが交わっているとき、錯角には全部で2つの組合せがあります。

上図において、他に錯角の関係にあるのは∠dと∠fです。

ちなみに漢字表記は錯「角」です。

「目の錯覚」などというときに使う錯「覚」とは異なるので注意しましょう。

錯角を理解するポイント!

図の中にある錯角を探す前に、錯角の定義の文章を読み返してみましょう。

「2直線l, mに直線nが交わっているとき、∠cと∠eのような位置にある2つの角を錯角といいます。」

この文章をよく読むと、錯角とは「2つの角」を指すことがわかります。

図を見て「錯角はどれって言われても……」と、1つの角を探していませんか?

どことどこが錯角の関係にあるか考える時には、必ず「2つの角」をセットで考えましょう。

いろんな錯角の見つけ方

さて、それでは錯角の見つけ方・覚え方を3つご紹介しましょう。

  • Zを探せ!
  • 回転させて見てみる!
  • 3つの領域に分けて考えてみる!

重要なのは「どうやって見つけるか」ではなく「間違いなく見つけること」です。

どの方法でも構いませんので、自分が一番わかりやすいと思う方法で錯角の位置関係を頭に入れてください!

Zを探せ!

先ほどの図を、錯角を示すのに必要な部分だけに注目して見てみましょう。

錯角の周りだけ示そうと思うと、Zの形が浮かび上がってきますね。

「錯角はZAっと見てZを探せ!」と覚えてみてください。

回転させて見てみる!

直線同士によって分けられた領域を、時計回りに右上・右下・左下・左上と考えるのも1つの手です。

でもこのとき、直線がすべて斜めに引かれていると「どこが右上?ここは右上じゃなくて右下?」というように迷うことがあります。

この迷いがミスにつながりやすいので要注意!

こういうときは、2直線を貫いている直線(図で言えば直線n)を縦でも横でもいいのでまっすぐにしてみましょう。

途端に位置関係がわかりやすくなりませんか?

直線が全て斜めでややこしいな~~と感じたら、どれか1つをまっすぐにしてみてください。

3つの領域に分けて考えてみる!

他にもこんな考え方があります。

2直線l, mに直線nが交わっているとき、2直線l, mによって3つの領域に分かれていると考えてみましょう。

こう考えると、錯角はいずれも真ん中の領域にあることが見えてきます。

両サイドの外側に開けた領域には錯角がないことを押さえておきましょう。

錯角に関する重要な性質

さて、いろんな錯角の見つけ方をご紹介してきましたがいかがでしたでしょうか?

いろんな考え方に触れたことで錯角を見つけるのが速くなってきたら、錯角という言葉を活用する段階に進んでみましょう。

ここでは錯角に関する重要な性質を2つ挙げます。

  • 2直線に1つの直線が交わるとき、2直線が平行ならば錯角は等しい。
  • 2直線に1つの直線が交わるとき、錯角が等しければこの2直線は平行になる。

このような平行線と錯角の関係は、平行線と同位角の関係から説明することができます。

証明問題が問われることもあるので、説明の流れはきちんと追えるようにしておきましょう。

平行線と同位角&錯角の性質

これまでに、平行線と関係のある3つの角、対頂角・同位角・錯角のすべてを学んできました。

ここでまとめとして、平行線と同位角&錯角の性質を復習しておきましょう。

  • 2直線に1つの直線が交わるとき、2直線が平行ならば同位角は等しい。
  • 2直線に1つの直線が交わるとき、2直線が平行ならば錯角は等しい。
  • 2直線に1つの直線が交わるとき、同位角が等しければこの2直線は平行になる。
  • 2直線に1つの直線が交わるとき、錯角が等しければこの2直線は平行になる。

もちろん、これらの性質からも「対頂角は等しい」ことが確認できますね。

対頂角・同位角・錯角と平行線との関係性は図形問題に必須の知識なので、図を見てパッと答えられるように練習しておきましょう。

錯角の問題を解いてみよう

それでは、この性質を問題でどう活かすのか、実際の入試問題を解きながら見てみましょう。

以下の問題は、平成30年度都立高校入試大問1の問8です。

“次の図で l // m のとき、xで示した角の大きさを求めよ。”

では、早速解いていきましょう。

錯角と平行線の関係を使って角xを求めるために、まず角xの部分に、直線l, mに平行な補助線を引きましょう。

この補助線は直線mと平行なので、上図の赤色で示した角の大きさが70°だとわかります。

次に、この補助線と直線lも平行なので、下図のとおり錯角は等しくなります。

すると、角xのわかっていなかった部分は次のように値が求められます。

よって、角xの大きさは45°+70°=115°です。

錯角の勉強方法

問題の感覚がつかめたところで、勉強方法をまとめましょう。

自分なりの見つけ方をしっかり覚えよう

この記事でいくつか錯角の見つけ方をご紹介しましたが、その全てを覚える必要はありません。

自分が一番わかりやすいと思ったもの1つで良いので、その1つを完璧に覚えましょう。

とにかく数をこなそう

錯角を間違いなく見つけるためには、図を見てパッと答えられるくらいまで目を慣らすことが大切です。

「錯角の問題に関しては、一目見ただけでスラスラ解けるようになった」と言えるくらいまで練習問題をこなすのが良いでしょう。

錯角の直前対策法!

それでは具体的に、錯角の直前対策としてどのようなことに取り組めば良いのでしょうか?

都立高校入試では図形問題は頻出です。

また大問として出題されることもあります。

その問題を解くための武器の1つとして錯角の性質を使えるよう、次のことを意識してみましょう。

錯角と平行線・対頂角・同位角の関係を押さえる

錯角と平行線の関係性を使うような場面では、対頂角や同位角といった知識も一緒に使うことが多いです。

  • 対頂角はいつでも等しい
  • 同位角は2直線が平行ならば等しい
  • 錯角は2直線が平行ならば等しい

これらはセットで頭に入れておき、いつでも知識を使えるようにしておきましょう。

錯角を作り出すための補助線の引き方を覚える

先ほど解説した過去問のように、一見しただけでは錯角が見つからない図が出題されることもあります。

こういった問題に当たったときは、どこに補助線を引けば錯角や同位角の知識を活用できるかを考えてみましょう。

まとめ

錯角のいろんな見つけ方から入試問題での知識の活かし方までご説明してきましたが、いかがでしたでしょうか?

自分なりの見つけ方を一度習得できれば忘れないので、練習問題をたくさん解いて「自分のモノ」にしてくださいね。

図形問題の基礎知識として、錯角への苦手意識は早めになくしておきましょう!

今から対策!高校受験攻略学習相談会

「高校受験攻略学習相談会」では、「高校受験キホンのキ」と「高校入試徹底対策ガイド」が徹底的に分析した都立入試の過去問情報から、入試の解き方や直前に得点を上げるコツをお伝えする保護者・生徒参加型のイベントです。

入試分析に長けた学習塾STRUX・SUNゼミ塾長が傾向を踏まえた対策ポイントを伝授。直前期に点数をしっかり上げていきたいという方はもちろん、今後都立入試を目指すにあたって基本的な勉強の方針を知っておきたいという方にもぜひご参加いただきたいイベントです。

詳しくはこちら

監修者|橋本拓磨

橋本拓磨

東京大学法学部を卒業。在学時から学習塾STRUXの立ち上げに関わり、教務主任として塾のカリキュラム開発を担当してきた。現在は塾長として学習塾STRUX・学習塾SUNゼミの運営を行っている。勉強を頑張っている学生に受験を通して成功体験を得て欲しいという思いから勉強効率や勉強法などを届けるWEBメディアの監修を務めている。

-勉強法, 数学の勉強法

関連記事

高校入試対策!英語の「不定詞」をすっきり理解するコツを徹底解説!

中学英語の「不定詞」がわかる!用法の解説から英文読解のコツ、苦手克服につながる勉強法まですべてお伝えします。この記事を読んで不定詞を得点源にしましょう!

高校入試対策!社会・地理の「三角州」がわかる!得点源にするための勉強法を徹底解説!

中学社会・地理の「三角州」がわかる!ポイントを整理して丁寧にお伝えします。この記事を読んで三角州を得意分野にしましょう!

「高校受験・定期テストの勉強したくない……」という時にやる気を出すコツとは?上手な高校受験の乗り越え方について!

「もう勉強したくない」と思ったとき、そんな気持ちを自分で前向きにシフトチェンジしましょう。定期テストや高校受験の勉強に後ろ向きな気持ちを乗り越えるコツをご紹介します!

高校受験生必見!中学英語の最後にして最大の壁!関係代名詞のいろは

「時間が無い」「複雑で難しい」という悩みが出てくる関係代名詞。そんな高校受験生のために関係代名詞のルールや解き方を詳細にまとめました。この記事を読めばもう大丈夫です。

【高校入試】理科の「おしべ・めしべ」って何のこと?図解で得点につながるポイントをすべて伝えます!

中学理科の「おしべ・めしべ」がわかる!図を使った用語解説から得点につながるポイントまですべてご紹介!この記事でおしべ・めしべを得意分野にしよう!

都立入試の
傾向と対策
高校入試無料相談
参加受付中